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Summary

In this research, the s-version finite element method (s-FEM) is used to carry out
analyses on the particulate composite materials undergoing progressive damage. Matrix
material is assumed to be a polymeric material. Hard particles are embedded in matrix
material. S-'FEM simplifies the modeling procedures for particulate composite materials
because it allows us to build finite element models for the structure as whole and for
particles and their vicinities, separately. They are called “global” and “local” finite
element models. When particulate composite materials are modeled, the loca finite
element model contains a particle and its immediate surrounding region. The local finite
element models are superposed on the globa model. By adopting the s-FEM, placing
particlesin matrix material became atrivial task.

Matrix is considered to suffer from a material damage due to the growth and nucleation
of microvoids. Also, the composite experiences damage due to particle-matrix
dewetting. The former is accounted for by the use of a continuum damage constitutive
law. The later is by a cohesive zone model. Two kinds of continuum damage models are
used in this research. They are an isotropic and a separate dilatational/deviatoric damage
congtitutive law that accounts for the influences of hydrostatic and deviatoric stresses
separately. The constitutive and the cohesive zone models were implemented in the
s-FEM computer program.

Numerical analyses were carried out to reveal the characteristic deformation behavior of
particulate composite such as the influences of hard particles to matrix damage, the
influences of particle-matrix dewetting to matrix damage, etc.

The results revealed that the separate dilatational/deviatoric damage constitutive model
with a small contribution from the deviatoric stresses was the most appropriate model
among the models which were tested in this study. When the cohesive zone model is
assumed at the interface between the particles and matrix material, the strength of bond
of the cohesive zone determines the damage mode that dominates the other. When the
bond is strong, the matrix damage is the major damage mode. When the bond is weak,
the dewetting is the mgjor damage mode.

The outcomes of present research revealed some characteristic behavior of progressive
damage in polymeric particulate composites.



1. Sversion Finite Element Method (S-FEM) for the analysis of
particulate composite materials

1.1 Equation Formulations

In this section, we discuss about general formulations of the s-version finite element
method (s-FEM). It is assumed that particles or fibers are distributed in the domain of
analysis as shown in Figure 1. Though Figure 1 implies that the particles or voids are
spherical in their shapes, there is no such restrictions in the mathematical formulation.
The second phase material can be fibrous or any others in their shapes. Though the
previous formulations of the ssFEM (see Fish [1] for example) assumes only one
overlaid model to be superposed on the global model, we allow any numbers of finite
element models to be superposed. Then, the overlaid models are allowed to overlap
each other, as depicted in Figure 2. When the shapes of the embedded second phase
materials are the same or similar to each other, the same local finite element model can
be used repeatedly. Therefore, generating a model for the composite would be a simple
task.

In the following discussions, the regions of the global and the p-th (p=1,2,3, , M)
local finite element models are designated to be Q€ and o', as depicted in Figure 3.
We assume that there are a total of M local model regions. The displacements are
defined based on the shape functions of elements in the global and local models,
independently [see references such as Bathe [2] and Hughes [3] for the shape functions

of finite elements]. We write them to be u® =u®(x) in @ and u'P=u"P(x) in Q'P,

where x denotes the position of a materia point. At a point which is not inside of any
local model regions, the displacements u; are the same as the displacement functions

u® of Q.

U =uC(x) «y

At a point where some local finite element models overlap, the displacement functions
u, are given by the sum of displacement functions of the overlapped models. For

example, at a point where the local models Q' and Q9 (1<p,q<M,p=q) overlap
on the global model a°, the displacements u, are represented by the sum of their



displacement functions, as:
Ui = uC(x)+u"P(x)+ut9(x) (2)

To assure the continuities of displacements, those based on alocal finite element model
are set to be zero at its outer boundary. We let:

uP=0 a oo’ (3)

where 60" designates the outer boundary of local model region Q.
Stresses at a point are written in terms of strains through Hooke's law [see Sokol nikoff
[4], for exampl€].

oij = Ejiwéw (4)

where the elastic constants Ej,, may vary within the solid and are the functions of

location of amaterial point.
Eijie = Eijie (%) )

The statement of principle of virtual work iswritten to be:

odu; ou _
foe S By 5 2d0° = fpe b d2® + [y syt d(oal) (6)
i !

where su; are the variations of displacements, by are the body force per unit volume,

f are the prescribed traction vector on the traction prescribed boundary QS . The
variations of displacements ou; are assumed in the same manner as the displacements



u; , by the superposition at material points where they overlap. Thus, ou; are written to
be &y =suC(x) where no loca models overlap on the globa model and

Uy = suB (x)+ouP(x)+sut9(x) where local models Q' and Q'Y (1<p,q<M,p=q)

overlap on the global model. suP (1< p<M) are set to be zero at the boundary QP

of Q'P.

Thus, the displacements and their variations are substituted in the statement of virtual
work principle. After some algebraic manipulations, we arrive at:

adu” g g M. osf aur o R ) .
Jos ox, ijke o, pZ:]_JQLp 2, ijke o, Joe AUy faQ? .t ( ¢ ) (7)
oduP ug osu? uP o om o8uLP auld i )
e E. K GO [, B K dOP 4 e B N K_goPta _ [ . sutPh dotP
.[Q p 8Xj ijke ox, .[Q p 8Xj ijke ox, q§1 fg p-La 8Xj iike o, Ig » U Py

(8)
(p=123:M)

From the left hand sides of equations (7) and (8), various stiffness matrices are obtai ned.
Thus, an equation can be written in amatrix form, as:

K G K&l  gGl2 gGl3 = (GIM ][ G EG

K L1-G K L1 KLUL2 gLl LM | L gL

KL26G  l2-u K L2 KL2L3 . glatm || L2 L2 (9)
L3-G L3-11 L3-L2 L3 L3-LM LBt

K K K K - K u F

KM-G LM-LL IM-L2 | LM-L3 LM (| LM F LM

KC is the ordinary stiffness matrix for the global finite element model which arises
from the first term of equation (7) and K* (p=123---,M) are those for the local
finite element models arising from the second term of equation (8). KC-'P
(p=123--,M) and K¢ (p=123.---,M) arethe coupling stiffness matrices between
the global and local finite element models, arising from the second term of equation (7)
and the first term of equation (8), respectively. K'P'9 (p,q=123--,M;p=q) arethe
coupling stiffness matrices between the loca finite element models arising from the
third term of equation (8). F¢ and F'* (p=123--,M) are the nodal force vectors



of external and body forces. It is noted that the matrices have the properties of

KLP=C = (KG‘Lp)T and K'P-td- (K Lq‘Lp)T . Therefore, the coefficient matrix in the left
hand side of equation (9) is symmetric.
Unknown noda displacements are obtained by solving the linear simultaneous

equations (9), and the displacement field in the composite is determined (see Okada, Liu,
Ninomiya, Fukui and Kumazawa [5] for the full details of the solution procedures).

(a) Particulate composite (b) Fibrous composite

Figure 1 Schematic views of composite materials
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Figure 2 An ssFEM model for composite material in which each fiber/particle
and itsimmediate vicinity are modeled by aloca finite e ement mesh
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Figure 3 Local model regions (Q"*(p=123,--,M)) which are superposed on the
global model region Q°

1.2 Numerical Implementations of sSsFEM (Evaluation of stiffness matrices)

A unique feature of the ss=FEM isthat elementsin global and local finite element models
overlap each other. There are many ways for elements to overlap, as shown in Figure 4.
Elements may overlap each other in an arbitrary manner. This raises serious problemsin
the evaluation of stiffness matrices such that i) when a coupling stiffness matrix such as
K P9 s formed, elements in different finite element models may partially overlap
each other (two-dimensional illustration is presented in Figure 5) and ii) more than one
material models or material parameters that are specified by the overlapping elements
may exist at a point. Some special care must be given to overcome these issues. In this
section, how we can overcome these issues in SsFEM computer implementation is
described.
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Figure 4 Many ways that two elements overlap each other; (a)~(c):
Two-dimensional examples and (d)~(f): Three-dimensional examples

P

|
ol [a“’“"/ =1 (where QP19= qlPin ™Y )]

Figure 5 Overlapping region Q-9 of theregions Q" and Q9 of two
elements (Lpi and Lpj)

AN

1.2.1 Evaluation of element and coupling stiffness matrix

We consider atypical scenario. Figure 5 illustrates the finite elementsi and j of the local
mesh regions p and g. They are designated to be elements Lpi and Lqgj, respectively.
They overlap each other and, therefore, their coupling stiffness matrix is formed. The
coupling stiffness matrix |[c“"-1 | can bewritten to be:

10



kLpi—qu = [ LpiLg BLpi [E]Bqu QLpi—qu (10)
e ] oo [

where [ | and |89 are the strain-displacement matrix for the elements, and [g]
is the matrix representing the elastic constants Ej, in equation (5). QP9 is the

volume of overlapping region. When the coupling stiffness matrix is formed, a
numerical integration is performed for the overlapping volume QP-td

However, the overlapped region QP9 may have a complex geometry. It is almost
impossible to explicitly define the geometry of the overlapping region and to apply an
ordinary numerical integral scheme such as Gasuss quadrature. In this study, we
perform the integral based on one of the overlapping elements. It can be shown to be:

[k Lpi-Lg ]: st Lpi-Lqj (x)[B Lpi P [E][B L }jQ Lpi (1)

a"P-L9(x) is a scalar function whose value is “1” in Q-9 and “0” outside of
Q'P-L9 asindicated in Figure 5. Numerical integral is performed based on element Lpi.
Therefore, the integrand of equation (11) has a sever discontinuity since the value of
a"P-L9(x) changes abruptly from “1” to “0” or “0” to “1”. Therefore, an ordinary
Gauss quadrature is unable to evaluate the integral accurately. In order to circumvent
this problem, we devel oped an element subdivision scheme.

The element subdivision technique is illustrated in Figure 6 for two- and
three-dimensiona problems. As shown in Figure 6 (a), two-dimensional elements Lpi
and Lqj partially overlap each other, and the integration is performed based on Lpi. First,
element Lpi is divided into 4 sub-cells. Then each subdivided-cell is checked if it
intersects with the edges of element Lqj. If a subdivided-cell intersects with the edges of
element Lqj, it is divided into 4 sub-cells again. This process is repeated until the
smallest sub-cell becomes small enough (typically within 1% of the volume of element
Lpi). The processes of creating sub-cells are shown in Figures 6 (a-ii)~(a-iv). Then, an
ordinary Gauss quadrature rule is applied in each subdivided-cell. The same approach is
adopted in three-dimensional problems, as shown in Figure 6 (b-i)-(b-iv). However, it
should be noted that proposed methodology is not computationally efficient and takes
much longer computational time than the ordinary Gauss quadrature, because many

11



Integration points are used to carry out the numerical integral.

(i) (aii) (axiii) (&iv)

(b-iv)

(b-i) (b-ii)

Figure 6 Element subdivision techniques for (a) two- and (b) three- dimensional
problems

1.2.2 Material constants and strain histories

In an ordinary finite element method, the material constants are assigned to finite
elements and the strain history information, such as damage paramters are stored at the
integration points. In present s-FEM analysis, the global and local finite element models
overlap each other and material data including initial strains and strain history
parameters are assigned to global and local finite element models independently. This
means that two or more sets of material parameters exist within an overlapping region.
First, priority orders are assigned to material models in the input data. Deformation
history data is stored at ordinary integration points in each element in global and local
finite element model. When two or more finite elements overlap at a point, a material
model having the highest propriety order is chosen first. If there were two or more
overlapping elements having the same material model at a point, deformation history
data of the smallest element is used to form the stiffness matrices.

For example, in Figure 7, a two-dimensional schematic illustration is given. There are
two material models A and B that are assigned to the elements. At a point within the

12



overlapping region, material model A or B is chosen according to their assigned priority
orders. Even when an ordinary element stiffness matrix is formed, abrupt changes in
material constant may occur. The element subdivision scheme of section 1.2.1 is used
for such cases.

Next, we discuss about treatments for the strain history parameters. When the element
subdivision technique is adopted, many integration points just for numerical integration
are generated. If one tries to store the strain history data at each one of them, a large
amount of computer memory will be required. Thus, in present ssFEM program, each
ordinary integration point carries the strain history information. For example, in the case
of two-dimensional linear finite element, there are four ordinary integration points, as
depicted in Figure 8. Figure 8 presents the positions of four integration points in &-n
normalized coordinate system. Each of the integration points represents a quarter of area
of the element as shown in Figure 8. When the element subdivision technique is used,
the &-n normalized coordinate values of each generated integration point are evaluated
and the program chooses an ordinary integration point whose strain history parameters
are used. For three-dimensional case, the same strategy is adopted.

having the higher priority is used
 Strain history data on the smaller
sized element is used

[0 Material model A or B ]

Ordinary integration points
(Strain history data stored)

Figure 7 A region of multiply assignmed material models and the Gauss points in
the overlapping elements

13



1<E<0 n 0<g<+1
0<n<+1 g O<n<#

-1 10

1<e<01 1 ©® ©O— ] [0<e<+1
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-1

Figure 8 Gauss pointsin an element (two-dimensional quadrilateral element)
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2. Damage constitutive model

In this research, we assume the nucleation and growth of microvoids in polymeric
material and the dewetting between the particles and polymeric matrix material. Figure
9 shows the schematic view of damage modes. These material damages reduce the
effective area of material section. Thus, the materia stiffnessis reduced gradually while
progressive material damages take place.

Two kinds of damage constitutive laws were adopted. They are described in this chapter.
The isotropic damage model following Simo and Ju [6, 7] was extended to separate
dilatational/deviatoric damage model that can account for the dilatational and deviatoric
components of damages separately. The separate dilatational/deviatoric damage model
is especialy powerful when the deformation of the material under an ambient pressure
isanayzed.

The dilatational part of material damage is mainly due to the nucleation and growth of
microvoids. It is considered that under negative hydrostatic stress, the nucleation and
growth of microvoids do not occur. The dilatational damage model is assumed to be
induced when the hydrostatic stressis positive.

bt

Dewetting

Matrix damage (microvoids, etc.)

Figure 9 A schematic view of two kinds of damage modes; the growth of
microvoids in matrix material and dewetting between the particles and matrix
material

2.1 | sotropic damage constitutive model

15



First, we describe the isotropic damage theory by following Simo and Ju [6]. In Simo
and Ju [6], the effective stress concept and the hypothesis of strain equivalence are
described. When they are applied to the case of elastic damage, the elastic potential

energy of damaged materia, in terms of the strains &; and the damage parameter d

iswritten to be:

w(ew . d)=0-dp (e ) (12)

where y°(sy,) isthe elastic-potential function for virgin material that is written to be:
O 1
v (sz)ZECijszijgkz (13)

Just like equivalent stress concept in the theory of plasticity, a scalar parameter 7 that
measures the magnitude of stress/deformation is introduced.

7=v20°(ei) (14)

Criteria for the damage evolution are written as follows. First, the effective stress needs
to reach the critical value.

o(Flew)-r(d))=7(e )-r(d) =0 (15)

where r(d) isthe function of the damage parameter d . The relationship between r(d)
and d needs to be determined based an experimental data. The material damage
progresses when the damage parameter increases. Therefore, when the damage is
ongoing, the time derivative of the damage parameter d must be positive.

d>0 (16)

d isdetermined through the evolution law, as:

d=rH(7,d)= (g JH(7,d) (17)

16



The constant H(z,d) characterizes the progress of damage with respect to the effective

stress like term. Equations (15) and (16) must be satisfied when the progressive damage
takes place. It is noted that the constant H(z,d) is always positive. Therefore, the

equivalent stress-like term must increase to satisfy equation (17), while the material
damageisin progress.

Since the elastic potential energy is assumed in the form of equation (1), the stresses

ojj arewritten in the following form.

oij = (1-d)Cijw ek (18)

The rates of stresses can be expressed by differentiating both the sides of equation (12),
as.

6ij =L~ d)Cijks éws — ACijis €1 =1~ dCijis g — dof (19)
where of(=Cjz,) are the stresses when the virgin material is assumed for the same

strains. From equation (17), therate d of damage parameter d can be derived to be:

o _
d=7H(r,d)= H(f,d)o-_k/' E = H(i’d)a&ékf (20)
T T

H(r,d) characterizes the rate of damage parameter d with respect to the rate of the

effective stress-like parameter 7.
Substituting equation (20) in equation (19), we arrive at:

. ) p . H(7,d .
Gij =[1-d)Cijkréi — dof) = (1-d)Cijréie —¥0ﬁ)0&8u (21)

D .
= Dijjkexe

where

17



H(z,d
Dl = 1-d)Cijis -%05’0& (22)

Dijir are the tangent moduli for the isotropic damage material and have the major and

H i H 1D 1D 1D 1D ID ID
minor SymmetrIeS, l.e. Dijkf = Dk[ij y Dijkf = Dij[k and Dijké = Djik€ .

2.2 Separ ate | sotropic/deviatoric damage model

The damage evolution of some class of materials are more sensitive to hydrostatic
pressure stress than shear stresses. A typical scenario is in a material containing
microvoids. Microvoids grow under applied positive-hydrostatic pressure stress. But
they do not grow under negative-hydrostatic pressure stress. The growths of the voids
are assumed to be less sensitive to the shear (deviatoric) stresses than
positive-hydrostatic stress.

One way to model such material is to separate the contributions of isotropic and
deviatoric stresses to the damage growth. To do so with a very simple model, we
separate the damage parameter d into the dilatational (volumetric) and deviatoric parts.
Hence, the elastic potential energy function [equation (12)] is modified and is written to
be:

w(ek . dy . dp) = (1-dy W) (e )+ (- dp )'//I%(gi'j) (23)

where ¢ and & are the volumetric and deviatoric strains. The functions yy and

wp aredefined to be:
1 ,
Y :EK(gkk)z and yy = usfjei] (24)

where K and x arethe bulk and shear moduli. It is noted here that under a constraint
condition dy =dp, the separate dilatational/deviatoric damage model is the same as the
isotropic damage model. We define two kinds of effective stress-like terms, as:

18



Ty = x/Zl//\c/’ () = \/K(Skk ) and 7p =23 (Si'j )= \ 21l €] (29)
When the damages are in progress, the following conditions must be satisfied.

7y =ry,(dy) and o >0 for thedilatational damage (26)

7p =r,(dp) for the deviatoric damage (27)

The evolution equations for the damage parameters are written, as.

Ke pp

& 28
- K (28)

dy =7y Hy (7y,dy )= Hy (7 ,dy WKég = Hy (7y.dy )

2l 1, (29)

dp =7pHp(7p.dp)=Hp(7p.dp ) ——2—
\ 248 pqé py

The constants Hy (7,,dy) and Hp(7p,dp) govern the evolution laws for the damage
parameters. The constants are the functions of the effective stress-like terms 7, and
7p and of the damage parameters dy, and dp. From equation (23), we can write the
stresses, as:

oy (e, 0y, dp)

ojj = . = (1-dy )ojj Keyg + 21— dp Juz] (30)
ij

By differentiating both the sides of equation (30) and making use of equations (28) and
(29), we can write the rate form constitutive equation, as:

Gij = (L—dy )6ij Kéy +2(1-dp Jusf; — dy Keyg - 2dp ps
Hy (7 'dv)(

4H z_- ’d 2 ’ 1 by
—D(_D D)ﬂ &l ekl
D

= (1-dy o Kéw + 21— dp Juélj - Kewe ) &0 -

WD
= Djj éwe

(31)
and,
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Di\j/kED = (1— dy )K5ij O + (1_ dp )ﬂ(5ik5jé + 5jk5i()

7 7 32
——HV(T_V'dV)(ngk)25ij5ke ——4HD(_TD'dD)ﬂ2€i'j€|'<e (32)
Tv D

ie"  arethe tangent moduli that relate the rate of stresses to those of strains. It is noted
that Dy.° havethe mgjor and minor symmetries, i.e. Dy.° =Dy;°, Dj.° =Dy,° and

V-D _ ~V-D
Dije” = Djike -
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3. Cohesive zone model and itsimplementation in the ssFEM computer
program

The cohesive zone model was implemented in the ssFEM computer program. In present
research, the cohesive zone model accounts for separation between the reinforcing
particles and matrix material. In this section, the formulations of the cohesive zone
model (Chandra [8], Foulk, Allen and Helms [9], etc.) dong with the ssFEM are
presented.

3.1 Cohesive zone model

Interface separation law is characterized by the cohesive zone model. The interface in a
solid is depicted in Figure 10. We assume that such interface separation takes place
while progressive dewetting between matrix and a particle occurs. A three-dimensional
illustration is given in Figure 11. Here, we define two kinds of coordinate systems. One
is the global coordinate system (x;,x,,x3) which is fixed in the space and the other is
local coordinate system (%,%»,%;) in which %, and x, are in the plane of the
interface and X3 1S perpendicular to the interface. We define upper and lower faces as
depicted in Figure 11. The positive direction of the X; coordinate and the normal
direction n of the interface are defined as depicted in Figure 11. Their directions are
defined from the lower to the upper surface. Relative displacements AG“H*  are defined
as the difference of the displacements "+ and G°"4~ of the upper and the lower

faces, respectively. (») indicate that the components of the vector are written in the

(%,%5,%3) local coordinate system.
AUiCHZ _ UiCHZ+ _ UiCHZ— (33)

By using the relative displacements AG“H#, we define a dimensionless parameter 1
which characterizes the separation and the dlips of the interface, as:

_cHz \2 _cHz \2 _cHz )2
;L:J(Aul j +(Auz j +[Au3 ] (34)
X X on

where & and on are the length parameters that characterizes the distance of partial
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separation before the final one. Then, an energy density function is defined in terms of

A
WEHZ _\CHZ (3)
wCHZ —wCHZ (1) isthe energy potential and has properties of:

w2 (1-=0)=0
wCHZ (2 OO):WCHZ‘

)

Separation

WCHZ‘Sep ~isthe energy required to open unit areain cohesive zone.
aration

Since W2 —w®HZ (1) represents the energy, we can express:

CHZ CHZ
WCHZ ()= ow AGCHZ . _OW = CHZ (@=12)

olauShz) ™ olausht?
Therefore, cohesivetractions T; are written to be:

aWCHZ _ aWCHZ

T, = a=12), T3=

Thus, we can express T, as:

7 aWCHZ ~ dWCHZ oA ~ dWCHZ AUaCHZ l_ dWCHZ AUO({:HZ
“olaus?) dr elamS?)  d 2 4 A 487

- W2 awCHZ o gwCHZ ATSHZ 1 qwCHZ AgSHZ
= 1

olaust? ) dr fawft?) A 52 4 di 42
It is assumed herethat w2 hasthe following form:

WEHZ(2) = 5,0 M (1)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

Here, o)™ is the maximum normal stress and the maximum value of (1) is one.
f(1) is the dimensionless function of 4. The function f(1) takes its values
f(1=0)=0 and f(1—«)=0.By using equation (41), the tractions can be written, as:
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£ oW aw on  _dw Augte 1 5. g Max df (2) AuSH?
a 6(AU§HZ) di 8(AU§HZ) di 52 A non T 152 @)
5 ATS™Z 1 df (1)
_[9on | mAx AUg 1 OT\A)
s ) " S A di
oW aw™  ar aw AuET 1 o wax df(2) AT
5 = _ - 1 arie)
a(AU:g:Hz) di a(AUSQHZ) i g2 2 U di g2 (43)

_ sMAX AUF" 1 df (1)
" S5y, A di

In many literatures such as [8] and [9], equations (42) and (43) are interpreted to be:

. MAX AGSHZ
Ta =Q0n F(ﬁ);— (44)
t
—CHZ
T = o)A (45)
5]’1
where,
5n
=n 46
= (46)
Or we can write:
—CHZ
T, = 0 oM E(p) Al (47)
5t 5t
—CHZ
Ty = o R ()= — (48)
n

In order to obtain rate form tangent moduli, we further differentiate equations (47) and
(48) with respect to time.

- S )
T, = 5i o MAX {—” F(2)aush?
t t

—CHZ , —=CHZ —CHZ , —=CHZ
. on AU AU . AU AU .
AGPHZ 50 ma 22 AgSHZ  Toe TT8 AG$t2 ]}

5t 5t2 5t §t2 5t ) n

L LAF()| 8 ATSHZ AT H?
A di
(49)

Likewise,
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T, = L o MAX {F (2)ausH?
n

HZ \—CHZ —CHZ \—CHZ CHZ 5 ~CHZ (50)
N 1 dF(2)[ ATE™ AT AGCHZ ATFHYATSY oy AUgTAUST oy
= oz 28 22 AGHZ L 28 S8 AGS
A da 52 52 5y

In amatrix form, we can write:

N 19 o
T St
T,l=a"lEa) 0 L o
T. i
3
L 5"\_
16, ATHEATSHZ 1 5, ATSHEATSHZ 1 TS ATSHZ | (51)
ot O 52 ot O 52 5 5 0, AGCHZ
L LAF() 1 4 AugH Ao 1 s, AugtPaagtt 1 Augt angt? AUlCHZ
> = - 2
A di |6t 6 52 & O 52 St 56, AGEHZ
1 AGSHZ AGEHZ 1 AGSHZ AGSHZ 1 AGSH? A—cHz 3
I & 6,0, & 6,0, s 52

Therefore, the tangent matrix in the rate formulation is symmetric.

Function F(2) have some choices as described in Chandra [8]. In present analyses,
following Foulk, Allen and Helms [9], welet F(1) be:

27
F(1)=5 (1 2,1+,12) (52)
and therefore, d';—g’%) 27( 2+24)= 227 (1-1)

In order to show the significance of this choice of function F(1), we consider the
energy per unit area of the interface due to an opening mode. For the absence of A4
and Aust™4 components, we can compute the energy Q, as.

Q=JT, d(Aug(,:HZ ) [§Ta0,d4 = [go % 5@%(1- 24+ A2 )cm = %ar“,"’*x Sn (53)

where
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—CHZ
o= oM R A MR (i) = o 2274 2 (54
n
and

d(AUgE:HZ ): 5qdA (55)
From the expression of (54), the maximum valueof T; is oM™ for 1= %

From equations (53), (54) and (55), one can state:

® M and 5, determines the characteristics in normal separation (energy and

initial stiffness of the interface).

MAX
e In characterizes the initial stiffness of the interface.

n

In addition, by examining equation (50), one can find that % characterizes the
t

stiffness ratio between the normal and the tangential separations of the interface.

Pttt

Progressive dewetting/
Interface separation

20\

N—/

Matrix material

nnnn

Figure 10 Progressive dewetting/interface separation between a particle and matrix
material
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Figure 11 The cohesive zone and associated coordinate systems ((x,x,,x;) global
and (x,,%,,%;) local coordinate systems)

3.2 Cohesive zone with an arbitrary orientation

In the previous section, the cohesive zone model was described in the (%;,%,,%;) local
coordinate system. In this section, detailed discussions on how the coordinate
trandations from the local to the global coordinate system are carried out are given.

We assume arate form formulation and the rates of stresses on the interface are written
in terms of the rates of relative displacements.

T = kAt (56)

where the components of k; are found from equation (51), as:
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_ _ _ % 0 0
kit k2 kg t 1
k21 k22 k23 —GMAX F(ﬂu O 5— 0
ka1 ks ks '
1
0 0 —
L On |
15, AGTZATT? 1 5. ATCHZATSHZ 1 ATCH? A—CHZ
o O 5t2 o O 5t2 5t 0t On
L1 dF(4)| 1 &p augau™ 1 s, augtang™t 1 AuCHZAUCHZ
A dl |6 6 52 Ot O 52 S5 5 n
1 ATSHZ AT 1 AT CHZ \gSHZ 1 ATSHZ AuSH?
R s 500, Jn 52 |

(57)

When the interface is oriented in an arbitrary direction, matrix k; in the (%,%;,%;)

local coordinate system must be transformed to the ¢ global coordinate system. The
directions of %, and X, coordinate axes are in the plane of the interface. %; is

perpendicular to the interface.

An inter-element face constitutes a cohesive zone element. The local normalized
coordinates (¢£-7), the local coordinates (%,%,,%;) and the global coordinates
(%,%2,%3) are set as shown in Figure 12. Unit basis vectors with respect to the
(%,%2,%3) and (x,xp,%3) coordinate systems are designated to be (g,e,,&;) and

(e1,€5,€3), respectively.

First, we let the directions of ¢ and %, coordinate axes be the same, as shown in

Figure 12. Thus, the basis vector & isshown to be:

(oo )/ 9

Then, we define another unit vector é,,and & and &; arecalculated to be:

%% i‘! and é3=(§1><é2)/|§1><é2|1 €, =€3x¢ (59)

& =g |/|T e
on on
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The components k; of tangential stiffness of the cohesive zone are transformed to the

global coordinate system, as.

ki =& - (kg8 )¢ =kie (B @ e ;) ©0)

kj show the stiffness of the cohesive zoneinthe (x,x,,x3) global coordinate system.

Pttt

ARIR IR IR

Figure 12 The (x,,%,,%;) local coordinate system and its unit basis vectors
(€,.8,,8), and (¢-7) normalized coordinates
3.3 S'SFEM formulation with the cohesive zone model
3.3.1 Formulations
The cohesive zone model is implemented in the ssFEM computer program. It is
assumed that the cohesive zones are only implemented in the local finite element

models. The global finite element model is not responsible for the cohesive zone model.
In the ssFEM formulation, we start with the principle of virtual work, as stated bel ow.
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J‘QG@EHM B 0 = o i d® + loos éUifid(aﬂtG)

OX;j 0Xy (61)

+ Joorz. £CHZ* gy CHZ+ d(SCHZ+ ) + Joorz £CHZ- a]iCHZ—d(SCHZ—)

where s“M%* and s°™4- are both the faces of the cohesive zone. 1%+ and "%~
are the rate of tractions on s“"4* and s“"4-, respectively, that are induced by the
opening of the cohesive zone. &°™* and &4~ are the variations of the

displacement rates on  s“"4* and s“M4-. They are in the state of equilibrium and
therefore we can write:

{CHZ+ __¢CHZ- (62)

Therefore, we have:

CHZ+ 5, CHZ+ d(SCHZ+) CHZ - 5,CHZ~ d(SCHZ—)

_[SCHZ+ ti + ISCHZ— ti
:CHZ CHZz CHZz CHZ (63)
= ISCHZ+ tj + (&Ji t_ T }j(S +)

The traction rates i“H4* are written in terms of the rates of relative displacements
AGCH2 on the cohesive zone, as shown in equation (56). The relative displacements are
written in terms of jumps in the displacements across the cohesive zone. Thus, 12+
are written to be:

§CHZ+ _ ki (U?HZ+ 3 U?HZ—) (64)

Where u$H* and ufH“ are the velocities at both the faces of the cohesive zone. k;

are the tangent stiffness of the cohesive zone, as described in previous section. The right
hand side of equation (64) has a negative sign because the positive direction of the
surface is opposite from that in previous section. By substituting equation (64) and by
using the superposition of displacements based on the globa and local finite element
models, we can write:

Lp
Ouy
aX€

o6u’ aul M o8P
Jos —— Ejjlu —=0dQ% + 3, [y ———Ejji

dQP =6 uCb dQC + [ e du T dleQC 65
OXj Xy p-1 X [oe oui”by IOQ? ||( t) (65)
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osuP a‘uLp

G
U oL

i ——dQP + [

6XJ Euk/ I p

) aX[

M anLp autd
ot Bijke — ou? dQLp + X JQLprq —k_dntp-td
g=1

E| I ox
Q¢ p . (66)

+ oo (&JiCHZ+(Lp)_ &-IiCHZ—(Lp )ﬁj (ujCHZ+(Lp)_ &I?HZ—(Lp)}j(SCHZ+ Lp ): oo AUPRQLP

(p:12,3,--~,M)

Here, we assume that there are M local models that are superposed on the global model.
The local models may overlap each other and their coupling terms appear in equation
(66). It is noted that though the cohesive zones of different local model regions may
intersect each other, their coupling terms do not appear in equation (66). That is because
two cohesive zones make a line of intersection when they intersect and the line has a
zero area.

3.3.2 Cohesive zone element

When the cohesive zone is implemented in the ssFEM computer program, we introduce
a concept of cohesive zone element. The cohesive zone element behaves like an
interface element. Figure 13 shows the cohesive zone element. For an illustrative
purpose, the cohesive zone element in Figure 13 a small thickness. In actual model, the
thicknessis zero.

The terms that are related with the cohesive zone element in equation (66) as expanded
further, as.

Jqorize (&JCHZ+(Lp) 3 &I_CHZ—(Lp))(”( JCHer(Lp) &JJCHZ—(Lp)}j(SCHZ+(Lp))

- 5uCHZ+(Lp)k uCHZ+(Lp)d(SCHZ+ Lp) Jeonz- a4 Z+(Lp)y |, CHZ- (Lp)d(SCHZ+(Lp)) (67)

ijYj
 fqorzs 0CHZ (Lo uCHZ+(Lp)d(SCHZ+(Lp ) + Joorzr UM (Lp)y. g CHZ- (Lp)d(SCHZ+(Lp))

[ IR

Discretization procedures for the first term in the right hand side of equation (67) are
described, as an example. Element stiffness matrix for a cohesive zone element
sCHZ+(LP) s derived as follows. The displacements within sCHZ+(LP) are expressed by
using the shape functions N'(1 =1,234) where the CHZ element is assumed to be
linear quadrilateral element.

G = [NJu®| (68)
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The detail of equation (68) can be written to be:

-lo Nt 0 0 N2 0 0 N® 0 o0 N* of' (69)

i) [N o 0o N2 0 o N® 0 o0 N* 0 o]
o o N o 0o N 0 o N 0 o0 N*

The superscripts in equation (69) designate the nodal numbers (1, 2, 3 or 4).
The variations of the velocities can also be written in the same manner. The stiffness of
the CHZ can be written in amatrix from, as:

kig ki ki3
k]=|kos koo kos (70)
kap Kz ka3

Thus, we have:

[ éuiCHZ+(Lp)kij L]J_CH2+(|_p)d(SCHZ+(Lp))= {m( ~4) }T [K CHZ+(Lp)]{u (1~4)}

T (71)
@D e [N T KIN Ja(sCHZ4LP) fut-9)|
The other terms are expressed in the same manner, as:
+ . — + L (1~a) T + - (5~
[ (Lp)kijuJCHZ (Lp)d(SCHZ (Lp))z{&( 4)} [KCHZ (Lp)]{u(S 8)} -

{0 e [NTT [N (5O (0 Ja(6-8)}
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[ aJiCHZ—(Lp)k“ u(_:HZ+(Lp)d(SCHZ+(Lp))= {50(543) }T [K CHZ+(Lp) ]{u (1~4)}

i (73)
~ 00 o [N KN Ja(sCH2 (P g 0-9)|

Joorz- éuiCHZ—(Lp)kiju?HZ+(Lp)d(SCHZ—(Lp)): {&-l(s-{a)}T [K CHZ+(Lp)]{u(5~8)}

(74)
— OO o [N TN JaCHZ+ (L) s 6-8)}
Thus, the term of the CHZ element can be written asitsfinal form, as:

Jecrz- (éuiCHZ+(Lp) B éuiCHZ—(Lp))(ij (ujCHZ+(Lp) _ &?HZ—(Lp)}j(SCHZ+(Lp))

_ {50( ~4)}r [K CHZ+(Lp)]{u( ~4)}_ {50(1-4)}r [K CHZ+(Lp)]{u(5~8)}
B {&](5~8)}r [K CHZ+(Lp)]{u(1~4)} . {5‘](1~4)§r [K CHZ+(Lp)]{u(1~4)} (79)
e e

where

[K CHZ+(Lp)J = Jocrz: [NTT[k]N ]d(sCHz+(Lp)) (76)

brrtt

ARIR IR IR A

Figure 13 A schematic view of a cohesive zone element
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4. Material damage evolution in particulate composite materials:
damage constitutive laws

In this chapter, we discuss about the mechanical interactions between neighboring
particles and the distribution and the evolution of material damage. We assume four
kinds of materials; (1) the isotropic damage material and the separate
dilatational/deviatoric damage material with the constant « being (2) 0.1, (3) 0.99 and
(4) 10.0. For the separate dilatational/deviatoric damage model, the distributions of the
dilatational and deviatoric damages are examined separately.

Matrix material is assumed to undergo the damage. The sources of damage evolutions
are due to the nucleation and the growth of microvoids. The stress-strain curve of matrix
material is postulated to be that of Kwon and Liu [10]. Although the uniaxia
stress-strain curve of Kwon and Liu [10] was measured for a polymeric composite
material, it is used to model matrix material in this investigation since there is no other
available material behavior.

In this chapter, we discuss about (1) how the relationship between the effective
stress-like parameters and the damage parameters are obtained, (2) the results of
analyses for unit cell models are described.

4.1 Relationship between the effective stresslike parameters and the damage
parameters.

4.1.1 Theisotropic damage model

The damage evolution law of equation (9) has a scalar function H(z,d) of 7 and d.
H(r,d) characterizes the damage evolution behavior and should be derived from a set
of experimental data. In this section, how the scalar function H(7,d) is determined is
described.

First, we assume that we have a stress-strain curve which was measured in an
experiment. Let us assume that we have a uniaxial stress-strain curve, as shown in

Figure 14 Stress is expressed by:

o=@1-d)Es (77)
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Therefore, the damage parameter d isexpressed by the stress and strain, as.

d=1-—2 (78)

Ee

The value of the effective stress-like parameter 7 can be written in terms of the
uniaxial stress and strain, as:

— I o o / [
T :1'Cijk€gijgk€ = O-nggke :\/ﬁgké :\/1—d & = O'O = EEZ (79)

Therefore, once the uniaxial stress-strain curve is given, relationship between the
effective stress-like and the damage parameter can be obtained. In present investigation,
auniaxial stress-strain curve is approximated by a series of piecewise straight lines, as
depicted in Figure 15. In Figure 15, points on the stress-strain curve (oy,¢1), (02,62),
(03.63), ®ee, (0i,5), (01s1.6121), eee coOnnect straight line segments. From a set of
data (o1,61), (02,62), (03,63), *ee, (0i,5), (oia1,611), *es, We can compute
(F,d1), (72,d2), (73,d3), eee, (5.,di), (Fi;1,disa), e by using equations (78) and
(60). Thus, the relationship between 7 and d is aso approximated by a series of
piecewise straight lines. The function H(z,d) which governs the damage evolution law
of equation (20) is approximated by:

H(rd)= 3~ din=d

T

(di <d <diy, 7 <‘;<;i+l) (80)

z_'i+1_'?i
The function H(7,d) whose value is determined by equation (80) is used in the
stress-strain relationship of equation (21).

We then extract a series of data points (oy,¢1), (02,62), (03,63),900, (07,67), from
the experimental stress-strain curve of Kwon and Liu [10], as shown in Figure 16. Asan
example, the relationship between the uniaxial strain and the damage parameter for the
case of isotropic damage is depicted in Figure 17. Thus, the uniaxia stress-strain curve
IS reconstructed by a series of linear approximations, as shown in Figure 18.
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Fig. 14 Uniaxial stress-strain curve
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Fig. 15 Piecewise linear approximation for uniaxial stress-strain curve
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Fig. 6. Stress—strain curve of a uniform composite specimen.

Figure 16 Uniaxial stress-strain curve of polymeric particulate composite
material that was given in Kwon and Liu [10]

35



o
o1

\ \ \
0.45 A — Damage variable

, /f
025 | /

0.15
0.1 f
0.05

©
~

=]
© w
w o

o
R

Damage Variable

0 0.05 0.1 0.15 0.2 0.25
Strain

Figure 17 Relationship between the strain and the damage parameter for the isotropic
damage consgtitutive model, which was extracted from the stress-strain curve of
Figure 16.
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Figure 18 Uniaxia stress-strain curve that was reconstructed after the relationship
between the effective stress-like and the damage parameters is established by the
proposed procedures.

4.1.2 The separ ate | sotropic/deviatoric damage model

In this section, the damage evolution law for the separate isotropic/deviatoric damage
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model is dealt with. As seen in equations (28) and (29), there are two different damage
evolution laws and two damage variables Hy (7, ,dy) and Hp(7p,dp). In order to fully
determine Hy (7,,dy) and Hp(7p,dp), we need at least two sets of stress-strain curves.
When only one stress-strain curve is available, we need to introduce at least one
additional condition.

We assume that a uniaxial stress-strain curve, as shown in Figure 15 or 16 is available.
As an additional condition to uniquely determine the damage evolution law, we
postulate that the ratio (dy/dp ) between the dilatational and deviatoric damage

parameters remains to be the same during the uniaxial deformation. We write:
dp = ady (81)

Here, « isapositive constant (0<a <x). When o equals zero, only the dilatational
damage is present. When « =1, the magnitudes of dilatational and deviatoric parts
equal each other and, therefore, this case is very similar to that of the isotropic damage.
When « isinfinitely large, the dilatational damage parameter d,, is zero. Therefore,

material undergoes deviatoric damage only.

We assume uniaxial deformation in x, direction. We can write the following
statements.

o171 # 0 (unknown); O9p =033 =012 =093 =031 = 0 (known)

&1 # 0, E1p =823 =E31 = 0 (knOWﬂ); Exp =E33 (unknown) (82)
Therefore, by substituting equations (62) and (63) in equation (82), we have:

o1 = (- dy JK(e1g +£2p + £33)+ = (1—ady )u(2e11 — 699 — £33)

o =(1-dy JK(egg + 60 + £33)+ = (1 ady (26 — £33 — £11) (83)

wliNwIvwN

011 =(1—dy K (611 + 62 + £33) + = (1— ady (2633 — 611 — £27)

From the second and the third of equation (83) and ¢,, = £33, One can obtain:
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2
0=(1-dy )K(egg + &2 +&33)+ 5(1— ady Julery — 22)

Thefirst of equation (83) and equation (84) lead to:

—O
— 11 +éep

27 50 ady Ju

(84)

(85)

By substituting equation (85) in the first of equation (83), we can establish a

relationship between o4; and &, as:
1
31— ady J1-dy JuKey — {5(1— ady Ju+(1-dy )K}Cfn =0

By rearranging equation (86), we can establish:

ad\§+ Mm—(1+oz) dy +|1- S
9/IK &11 Egll

Therefore, for agive set of variables oq;, ¢, and «,wecansolvefor dy .

Two specia cases(a=0 and « =1) are presented first. When « =0, we have:

0-d2 +{Mﬂ—(1+ O)}dv +(1— Eall J:o

UK &y €11
and,
dy =1-— 21 (a=0)
3K(3511 —"ﬂj
7,

When « =1, we have;

a2 443K om oy 101 |_g
9,LIK &11 Egll

and,
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dy =1- 211 (a=0) (91)
Egll

In is noted that there are two solutions that satisfy equation (90) and they are

dy =1- gll and dy =1. The second one takes a constant value and, therefore, isnot a
€11

feasible solution. For more general case (« #0.1), we solve equation (87) for dy, by
letting:

ad? + Ady +B=0 (92)
A=GHFE3K o . ,)  and B-1-T1 (93)
gﬂK &11 Egll

Therefore, the value d,, isdetermined to be:

~A+VAZ _40B
dy = o (94)

In equation (94), the sign associated with A% -40B needs to be determined. To

determine the sign, we check a special case (« =1). By letting « =1, in equation (94),
we have:

_1) (o on
dV a 2{ (Egll ZJi Egll} (95)

When we take the positive sign, equation (95) resultsin:

21y (on o | _
dV = 2{ (Egll ZJ-F Egll} 1 (96)

Thisisaconstant value (dy =1) and, therefore, isinappropriate. When the negative sign
Is assumed, we obtain:

T R -
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This result is the same as the case of isotropic damage materia (equation (78)).
Therefore, we choose the negative sign in equation (94).

_ ~A-A? _40B

dy o (98)
Thus, the deviatoric damage parameter dp isalso determined to be:
[ A2
dD Zadv :a_A_ A" —4dB (99)

2c

Once uniaxial stress-strain curve as depicted in Figure 14 is given, we correct a series
of points (oy1,¢1), (62.62), (03.63), eee, (0i,5), (0is1.5121), *ee, ON the curve, as

shown in Figure 15. Damage parameters (dy|. and dp|.) corresponding to the stress

and strain (oj,5) are obtained. Thus, by using equations (82) and (83), unknown
strains ¢,, and ¢33 (&9 = £33) are derived. Therefore, we can compute the effective

stress-like terms ?V(: \/Kskk) and fD(:,/ygi'jgi’j). Thus, we have a series of data

(dV|1’dD|1';V|1'fD|1) ' (dV|2'dD|2’;V|2'fD|2) ' (dV|3’dD|3';V|3'fD|3) %0

(dv|i,dD|i,va|i,ZTD|i), (dV|i+1’dD|i+1’;V|i+1’fD|i+1)' OOOThESCdaI' funCt'onS, Hv(fv,dv)

and Hp(7p,dp) arederived to be:

_ d dy|. . —dy| 3 o
Hv(f\/,dv):?—vzH (dv|i <dV <dV|i+l’TV|i <7y <TV|i+1)
v g (100)
_ d dpl. , —dpl. B o
HD(TD,dD)Z;—DzM (dD|i <dD <dD|i+l'TD|i <7p <TD|i+l)

D fD|i+1 _fD|i
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5. Material damage evolution in particulate composite
materials-cohesive zone model (dewetting between the particles and
matrix material)

5.1 Material damage evolution in matrix material under the influences of
mechanical interactions of particlessl (Four particle model without ambient
pressure)

In this section, we try to present how the damage zone develop when particulate
composite materials are loaded. First, we consider a ssmple problem such that a block
containing four particles is subject to tension, with or without ambient pressure.

In Figure 19, a model that contains four particles is presented. The finite element
models for the ssFEM analysis are also illustrated in Figure 19. As presented in previous
chapter, the stress-strain curve of Kwon and Liu [10] is postulated and the relationship
between the effective stress-like parameters and the damage parameters are obtained.
From the results of this simple problem, we can clarify the influences of particle
arrangements and of ambient pressure to the evolution of matrix damage.

Prescribed Displacement

132 22 2
' 1 Ambient e
M 2rn2r moien EINRT
5 4___Pressure N._j:!; b
0 ; 400 kPa 23,?:!_
BNy
===

Local Model: 928 elements 1007 nodes

Figure 19 The problem of four particles with and without the ambient pressure

5.1.1 I sotropic damage material without ambient pressure
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The distributions of stresses and damage parameter are presented in Figure 20, for the
levels of overal strain £ being 0.0632 and 0.1. It is seen that, for z=0.0632, both
tensile and transverse stresses concentrate at the top and bottom of the particles. The
magnitude of the concentrations seem to be dlightly severer in the gaps between the
particles than the other locations. Both tensile and transverse stresses are positive,
resulsting in a large value of hydrostatic stress. Dmage zones start to develop at the top
and bottom of the particles. In the gaps between the particles, the damage parameter is
slightly larger than the other locations. That is very similar to the case of stresses.

For £=0.1, the mgor trends are similar to the case of z =0.0632. However, material
damage takes place almost throughout the region of matrix material.
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Figure 20 The distributions of the tensile and transverse stresses and the damage
parameter for the case of isotropic damage without ambient pressure

5.1.2 Separate dilatational/deviatoric damage material with o = 0.1 and without
ambient pressure
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In the case of the separate dilatational/deviatoric damage model, the dilatational damage
is set to dominate the other. In Figure 21, it is seen that, for £ =0.0632, the distributions
of the tensile and transverse stresses are similar to those of the isotropic damage case.
The distributions of the transverse stress look differently. That is because the ranges are
different. The dilatational and deviatoric damage zones develop at the top and bottom of
the particles. They connect the particles in vertical direction. No damage develops in
horizontal directions from the particles. As expected, the dilatational damage parameter
is much larger than the deviatoric one.

When the level of overal strain £ increases to 0.1, the damage zones enlarge and the
most of part of matrix material suffer from the material damages. The dilatational
damage parameter is much larger than the deviatoric one. The particles constrain the
deformation of matrix material and the damage variables at both the sides of the
particles are amost zero.
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Figure 21 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =0.1 and without ambient pressure

5.1.3 Separate dilatational/deviatoric damage material with o = 0.99 and without
ambient pressure

In this case, parameter « is set to be 0.99. The distributions of tensile and transverse
stresses and the dilatational and deviatoric damage parameters are depicted in Figure 22.
The distributions of the stresses are similar to afore mentioned cases. Material damages
develop at the top and bottom of the particles where stresses are large. As shown in
Figures 22 (a3), (a-4), (b-3) and (b-4), the levels of the dilatational and deviatoric
damage parameters are similar. Their patterns of distributions are slightly different. The
dilatational damage variable at the sides of particles is amost zero and such regions
connect the particles in horizontal directions.



ala

| S R2
| het et
(a-1) Tensile stress (a-2) Transverse stress (a-3) Dilatational (a-4) Deviatoric
damage parameter damage parameter
(@ £=0.0632

ez

<. ooevs
o 205402
. 200107
I Bossi
.
. 10sv2
. 60010z
h
bx l

(b-1) Tensile stress (b-2) Transverse stress (b-3) Dilatational (b-4) Deviatoric
damage parameter damage parameter
(b) £=01

Figure 22 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =0.99 and without ambient pressure

5.1.4 Separate dilatational/deviatoric damage material with o = 10.0 and without
ambient pressure

In this case, the parameter « is set to be 10. It is assumed that the deviatoric damage
mode dominates the dilatational one. In Figure 23, the distributions of the stresses and
the damage parameters are shown.

The distributions of stresses are similar to afore mentioned cases. The level of the
deviatoric damage parameter is much larger than the dilatational one.
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Figure 23 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =10.0 and without ambient pressure

5.1.5 Summary: Separate dilatational/deviatoric damage material with a = 0.1,
0.99 and 10.0, and without ambient pressure

The distributions of the tensile and transverse stresses and the dilatational and deviatoric
damage parameters are described in section 5.1.1~5.1.4. The stresses are large at the top
and bottom of the particles. The regions of high stress connect the particles in the
vertical direction. At the sides of the particles, the particles constrain matrix material
from deformation. Therefore, the damage parameters are small at the sides of the
particles. The overall trends of distributions of the dilatational and deviatoric damage
parameters are very similar. Therefore, it is summarized that the choice of constitutive
models (the isotropic and the separate dilatational/deviatoric damage models with
different constant « ) does not make much difference in the results when no ambient
pressure loading is applied to the block.
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5.2 Material damage evolution in matrix material under the influences of
mechanical interactions of particles-2 (Four particle model with ambient pressure)

In this section, the same four particle problems are solved with ambient pressure that is
applied as distributed force from the sides of the block. The ambient pressure is 400kPa.

Results (the distributions of tensile and transverse stresses and the dilatational and
deviatoric damage parameters) are visualized for overall tensile strain z being 0.1 and
0.135. Since the ambient pressure is applied, Poisson’s ratio effect produces negative
tensile stress. Thus, overall tensile strain £ is set to be 0.1 or 0.135 so that the tensile
stress in the block is almost the same as the cases of previous section (without ambient

pressure).

5.2.1 I sotropic damage material with ambient pressure

In Figure 24, the distributions of tensile and transverse stresses and the isotropic
damage parameter are depicted. Major trends in the distributions of tensile stress are
similar to those without the ambient pressure. Also, major trends in the distributions of
transverse stress are also analogous to those without the ambient pressure, except for
that the value of stressis about -400 kPa at distant points from the particles whereas it is
about zero for the case without the ambient pressure.

The distributions of the isotropic damage parameter are quite different from those
without the ambient pressure. When the block is subject to tension without the ambient
pressure, the damage zones develop at the top and bottom of the particles and do not
appear at the sides of the particles. However, with the ambient pressure, the damage
zones develop at the sides of the particles. The concentration of negative stress due to
ambient pressure occurs at the sides of the particles. That is why the damage zones
develop at the sides of the particles.

Development of damage zone due to the growth and nucleation of microvoids under

negative stress are not likely to occur. Therefore, the use of isotropic damage
constitutive model may not be suitable for present investigation.
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Figure 24 The distributions of the tensile and transverse stresses and the damage
parameter for the case of isotropic damage with ambient pressure

5.2.2 Separate dilatational/deviatoric damage material with a = 0.1 and with

ambient pressure

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are depicted in Figure 25. The distributions of the stresses are
similar to those of the isotropic damage constitutive law. The distributions of the
damage parameters are quite interesting. The dilatational damage parameter is very
small compared with the case without the ambient pressure. The distributions of
deviatoric damage parameter are almost uniform within matrix material. The level of
the deviatoric damage parameter is small.
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Figure 25 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
o =01 and with the ambient pressure

5.2.3 Separate dilatational/deviatoric damage material with a = 0.99 and with
ambient pressure

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are depicted in Figure 26. It is seen that the dilatational damage
parameter is much smaller than the deviatoric one. The distributions of the deviatoric
damage parameter are analogous to the cases of the isotropic damage constitutive law
with the ambient pressure. This implies that the development of damage in the case of
the isotropic damage law is governed by the deviatoric stresses.
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Figure 26 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =099 and with the ambient pressure

5.2.4 Separate dilatational/deviatoric damage material with a = 10.0 and with
ambient pressure

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are depicted in Figure 27. The distributions of the stresses are
similar to those of the isotropic and the separate dilatational/deviatoric damage model
with the other values of parameter «. As the parameter o is set to be 10.0, the
dilatational damage parameter is much smaller than the deviatoric one. The distributions
of the deviatoric damage parameter look similar to previous cases that are of the
isotropic and the dilatational/deviatoric damage with «=0.1 and « =0.99.
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Figure 27 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =10.0 and with the ambient pressure

5.2.5 Summary: Separate dilatational/deviatoric damage material with a = 0.1,
0.99 and 10.0, and with the ambient pressure

Results with the ambient pressure revealed that when the isotropic damage model is
used, the progressive material damage occurs even under negative hydrostatic stress.
This contradicts with our basic postulation that the damage in matrix material is due to
the growth and nucleation of microvoids. These should not be sensitive to the deviatoric
stresses. Therefore, it is plausible to use the separate dilatational/deviatoric damage
model with asmall value of constant « .

From present sets of analyses we are unable to suggest the most suitable valuefor « .
5.3 Material damage evolution in matrix material under the influences of

mechanical interactions of particles-3 (Nine randomly distributed particle model
with and without ambient pressure)
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Following the four particle problems, we solved a problem with nine randomly

distributed particles. The problem configuration is depicted in Figure 28. Again, we

adopt the isotropic damage model and the separate dilatational/deviatoric damage

constitutive model with «=0.1, «=099 and «=100. Analyses are carried out with

and without the ambient pressure.
L U, prescribed

Master Local Mesh
‘ (1007 nodes, 928 elements)

Th
Th
T

distribution
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A
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:y | L | U, =0 hole/particle
X

5x5x5 Global Mesh

E*=10EM

=

Local Model: 928 elements 1007 nodes

Figure 28 The problem of none randomly distributed particles with and without the
ambient pressure

5.3.1 Isotropic damage material without ambient pressure (Nine randomly
distributed particle model)

The distributions of tensile and transverse stresses and the damage parameter are
presented in Figure 29. Trends are similar to the case of four regularly distributed
particles.

It is seen in Figures 29 (a-3) and (b-3) that the zone of large value of the damage
parameter connects the particles when they are close to each other. The stresses
concentrate at the top and bottom of the particles. The transverse stress at the sides of
the particles is negative and the zones of negative stress connect the particles when the
distances between particles are small.
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Figure 29 The distributions of the tensile and transverse stresses and the damage
parameter for the case of isotropic damage without ambient pressure (Nine randomly
distributed particle model)

5.3.2 Separate dilatational/deviatoric damage material with o = 0.1 and without
ambient pressure (Ninerandomly distributed particle model)

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are presented in Figure 30. The overal trends are similar to that of

four regularly distributed particle case. Again, the concentration of the transverse stress
IS not very clear.

The value of the dilatational damage parameter is much larger than that of the deviatoric
one.

53



Ia. ove-iz
’ 5.000°02

5. 25002

<. 5002 -

0. 7502 [ -

2. 750

I ¥

1. 500 e

(a-1) Tensile stress (a-2) Transverse stress (a-3) Dilatational (a-4) Deviatoric
damage parameter damage parameter
(8 £=0.0632

" 208+0: k. 2081 0:
: 10402 . 4002
- f T . 6002
"
. ;
. 60n+0; 2. 408402 |
x po0ez B x

b2

,

(b-1) Tensile stress (b-2) Transverse stress (b-3) Dilatational (b-4) Deviatoric
damage parameter damage parameter

(b) £=01
Figure 30 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =0.1 and without the ambient pressure (Nine randomly distributed particle model)

5.3.3 Separate dilatational/deviatoric damage material with o = 0.99 and without
ambient pressure (Ninerandomly distributed particle model)

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are depicted in Figure 31. The concentrations of the transverse
stress at the top and bottom of the particles appear more clearly than the case of « =0.1.
The tensile stress concentrates at the top and bottom of the particles as seen in al the
other cases. The values of the dilatational and deviatoric damage parameters are similar.
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Figure 31 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =0.99 and without the ambient pressure (Nine randomly distributed particle model)

5.3.4 Separate dilatational/deviatoric damage material with o = 10.0 and without
ambient pressure (Ninerandomly distributed particle model)

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are depicted in Figure 32. As seen in Figures 32 (a-2) and (b-2), the
concentrations of the transverse stress at the top and bottom of the particles are clearly

seen. The value of the dilatational damage parameter is much smaller than that of the
deviatoric one.
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Figure 32 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =10.0 and without the ambient pressure (Nine randomly distributed particle model)

5.3.5 I sotropic damage material with ambient pressure (Nine randomly distributed
particle model)

The distributions of tensile and transverse stresses and the damage parameter are
depicted in Figure 33. As seen in the case of regularly placed four particle problem,
progressive material damage at the sides of the particles are seen. They are due to
negative transverse stress.
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Figure 33 The distributions of the tensile and transverse stresses and the damage
parameter for the case of isotropic damage with the ambient pressure (Nine randomly
distributed particle model)

5.3.6 Separate dilatational/deviatoric damage material with a = 0.1 and with the
ambient pressure (Ninerandomly distributed particle model)

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are presented in Figure 34. The distributions of the dilatational and
deviatoric damage parameters are quite different from that of the damage parameter of
the isotropic damage model. Also, they look differently from the case without the
ambient pressure. It seems that the ambient pressure weakens the magnitude of
hydrostatic stress and prevents the dilatational damage zone from enlarging in matrix
material. The deviatoric damage parameter looks more uniform than the case without
the ambient pressure.
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Figure 34 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dil atational/deviatoric damage model with
a =01 and with the ambient pressure (Nine randomly distributed particle model)

5.3.7 Separate dilatational/deviatoric damage material with oo = 0.99 and with the
ambient pressure (Ninerandomly distributed particle model)

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are presented in Figure 35. The levels of the dilatational damage
parameter are lower than the case of «=0.1. In the distributions of the deviatoric
damage parameter, the concentrations of the damage parameter are seen not only at the
top and bottom of but also at both the sides of the particles. It seems that the
compressive stress due to the ambient pressure induces the evolution of the deviatoric
damage.
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Figure 35 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dilatational/deviatoric damage model with
a =0.99 and with the ambient pressure (Nine randomly distributed particle model)

5.3.8 Separate dilatational/deviatoric damage material with o = 10.0 and with the
ambient pressure (Ninerandomly distributed particle model)

The distributions of tensile and transverse stresses and the dilatational and deviatoric
damage parameters are presented in Figure 36. The mgor trends are the same as the
case of «=0.99. The value of the deviatoric damage parameter is slightly larger than
that of «=0.99. The value of the dilatational damage parameter is much smaller than
thoseof «=0.10 and «=0.99.
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Figure 36 The distributions of the tensile and transverse stresses and the damage
parameter for the case of the separate dilatational/deviatoric damage model with
a =10.0 and with the ambient pressure (Nine randomly distributed particle model)

5.3.9 Summary: Separate dilatational/deviatoric damage material with a = 0.1,
0.99 and 10.0, and with and without the ambient pressure (Nine randomly
distributed particle model)

From the sets of analyses presented in section 5.3, it is clearly seen that the major trends
in the case of randomly distributed particles are the same as those in the four particle
problem. However, it is seen that the damage zones connect the particles depending on
their distances. The most important finding in section 5.3 is as follows. The results seem
to be somewhat reasonable with all the constitutive models, i.e., the isotropic and the
separate dilatational/deviatoric damage model with «=01, «=099 and « =100
when the ambient pressure is not applied. However, when the ambient pressure is
applied to the block, the deviatoric damage zones develop at both the sides of the
particles, where the hydrostatic stress is negative. In present study, we assume that
material damage is due to the growth and nucleation of microvoids in matrix material.
Such material damage is not considered to take place under negative hydrostatic stress.
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Therefore, it is appropriate to use the separate dilatational/deviatoric damage
constitutive model with a small number of constant « . When the constant « issmall,
the contribution of the deviatoric damage is small relative to that of the dilatational
damage.

54 Material damage evolution-dewetting between the particles and matrix
material (cohesive zone model)

In this section, some preliminary results are presented. Due to the softening nature of
the cohesive zone model, s-FEM analyses tend to become unstable. Thus, we could not
use iterative solver to solve for the system of linear simultaneous equations. Thus, we
used a direct solver (skyline solver) in the analyses of section 5.4, although it is not very
efficient in terms of its memory usage. It is noted that for all the other analyses, an
iterative equation solver (Conjugate Gradient Method) is used. Because of this problem,
we could place as many as four particles.

Since the constants s,, & and oM in the cohesive zone model are not known,
postulated values are used in the analyses. We let 5, and &, be 0.01 which is much
smaller than the size of the particle in out problem. oM is varied and from small to
large values relative to the nonlinear stress-strain curve of Figure 16, i.e., oM =250
kPa, 500 kPa, 1000 kPa and 2000 kPa.

5.4.1 One particle model, without matrix damage (without the ambient pressure)

In this section, the results of one particle problem that is shown in Figure 37 are
presented. The particle is placed in the block made of elastic material. The constants for
the cohesive zone model are postulated to be:

5, =001, & =001, oM =250kPa, 500 kPa, 1000 kPaor 2000 kPa  (101)

In Figure 38, the tensile stress distributions in the central section of the block are shown
for the case of oM =250 kPa. In Figure 38 (@), the stress distribution shows stress
concentrations at the top and bottom of the particle. The distribution is very similar to
that without the cohesive zone model. This means that, at this step, the cohesive zone is
almost rigid. In Figure 38 (b), it is seen that the stress concentrations at the top and
bottom of the particle are weaker than those in Figure 37 (). The cohesive zone opens
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and the load transmitting capability of the cohesive zone starts decreasing.

In Figure 38, the distributions of the tensile stress for the case of o M** =500 are shown.
Thetrends are similar to those of oM =250. In Figures 39 and 40, the distributions are
depicted for oM™*=1000 and oM =2000, respectively. Except for Figure 39 (b), the
trends are very similar to those of oM™ =250 ands)""*=500. Due to the softening
nature of the cohesive zone model, the analysis suddenly became unstable. That is why

the stress distribution Figure 39 (b) looks asymmetric.
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5.4.2 One particle model, with matrix damage (without the ambient pressure)

In section 5.4.2, in addition to the cohesive zone model, we assume the evolution of
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material damage in matrix material. As seen in preceding sections, the separate
dilatational/deviatoric damage model with a small value of constant « has been
recommended to appropriately model the matrix damage due to the growth and
nucleation of microvoids. Thus, in this section, « is set to be 0.1. The stress-strain
curve of Figure 16 is assumed to model the behavior of matrix material. oM, a
constant in the cohesive zone model is postulated to be 250 kPa, 500 kPa, 1000 kPa or
2000 kPa.

In Figure 41, the distributions of tensile stress and of the dilatational damage parameter
for oM™= 250 kPa are presented. It is considered that oM**= 250 kPa is small
compared with the level of stress-strain curve of Figure 16. According to Figure 16, the
nonlinear deformation of matrix material initiates at 500 kPa. The value oM~ = 250
kPa is smaller than the stress at the initiation of damage. The tensile stress distribution
of Figure 41 (b) indicates that the stress concentration weakens due to the opening of
the cohesive zone at the top and bottom of the particle. Figure 41 (c) shows that the
dilatational damage parameter is very small. Therefore, when the value of oM s
small compared with that of damage initiation, the opening of cohesive zone occurs
before the material damage of matrix material takes place. Therefore, the major part of
the material damage is dewetting between the particle and matrix material.

In Figure 42, the distributions of tensile stress and the dilatational damage parameter are
shown for oM~ =500 kPa. In this case, the value of oM™ is comparable to the stress
value a the initiation of matrix damage. In Figures 42 (a) and (c), the distributions of
tensile stress and the dilatational damage parameter at overall strain 0.0441 are depicted.
At this stage, the damage zone has not developed much. The tensile stress distribution is
similar to that of elastic problem.

In Figures 42 (b) and (d), the distributions of tensile stress and the dilatational damage
parameter are presented for overall strain being 0.0632. The stress distribution indicates
that the dewetting between the particle and matrix materia is taking place. Figure 42 (d)
shows that the dilatational damage zones are developing at the top and bottom of the
particle. In this case, both the damage modesi.e., matrix damage and dewetting between
the particle and matrix take place.

In Figure 43, the distributions of tensile stress and the dilatational damage parameter are
presented for oMAX = 1000 kPa. From the figures, it is seen that the cohesive zone does



not influence the distributions of stress and the damage parameter. The cohesive zoneis
so stiff that it does not open and material damage due to the dewetting does not occur. In
Figure 44, the distributions are presented for oM = 2000 kPa. They are almost
identical to those of oM~ = 1000 kPa.
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Figure 41 The distributions of tensile stress and of the dilatational damage
parameter for oM =250 kPa.
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Figure 44 The distributions of tensile stress and of the dilatational damage
parameter for &M =2000 kPa.

5.4.3 Four particle model, with matrix damage (without the ambient pressure)

In this section, the results of analyses on the four particle model are presented. The
same damage constitutive law as that is used to solve the one particle problems is
adopted (the separate dilatational/deviatoric model with « =0.1).

In Figure 45, the distributions of tensile stress and the dilatational damage parameter for
oMAX =250 kPa are presented. It is seen in the figures that the value of the damage
parameter is small although the cohesive zones start separating and that the stress
concentration at the top and bottom of the particles weakens due to the softening of the
cohesive zone, i.e., dewetting.

In Figure 46, the distributions of tensile stress and he dilatational damage parameter for
oMAX =500 kPa are depicted. In this case, the stress at the maximum stress at the
cohesive zone and that at the initiation of matrix damage are comparable. It is seen in
Figure 46 (b) that the stress concentration at the top and bottom of the particles weakens
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due to both the damage mechanisms. The damage zones connect the particles aligned in
the vertical direction, as seen in Figures 46 (c) and (d).

In Figures 47 and 48, the distributions of tensile stress and the dilatational damage
parameter are presented for oM™ =1000 kPa and )M =2000 kPa, respectively. The
distributions in Figures 47 and 48 are very similar, although the different values are
given to the parameter oM. In both the cases of Figures 47 and 48, the cohesive
zones do not give any influences to the deformations of the composites. The cohesive
zones are stiff enough that they do not open.

As summary, we can conclude that depending on the combination of stresses at the
initiation of matrix damage and at the separation of cohesive zone. In present analyses,
the stress-strain curve of matrix material is postulated to be what was given in Kwan
and Liu [10] and the parameter oM of cohesive zone model that governs the stress at
the separation of cohesive zoneisvaried. When oM** isset to be 250 kPa, the stress at
the separation of cohesive zone is smaller than that at the initiation of matrix damage. In
such a case, interface separation at the cohesive zone is the major damage mechanism of
the composite. When oM™ is 500 kPa, the stress at the separation of cohesive zoneis
comparable to that at the progress of matrix damage. Both the mechanisms of material
damage take place. When oM is 1000 kPa or 2000 kPa, the interface separation at
the cohesive zone do not occur a all. The matrix damage is the magor damage
mechanism.
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6. Conclusions

In this investigation, the deformation and damage mechanisms of particulate composite
material are investigated. To do so, we adopted the s-version Finite Element Method
(sFEM). By using the s-FEM, the finite element models for the structure as whole and
for aparticle and its vicinity are built separately and are superposed each other. They are
called the global and the local finite element models. Once the global model and the
local model are built, they are superposed in any fashion as long as the region of the
local model is included in that of the global model. The local model can be superposed
on the global model repeatedly and they can also overlap each other. Thus, as seen in
this report, without building new finite element models, various particle arrangements
can be modeled without creating any new finite element models.

In this research, continuum damage constitutive models are adopted. They are based on
Simo and Ju [6]. To account for the contributions of the hydrostatic and deviatoric
stresses independently, the separate dilatational/deviatoric damage constitutive model
was adopted. By adjusting a constant in the model, we can model various combinations
of the contributions from the hydrostatic and deviatoric stresses. For example, when the
constant « issetto zero, purely dilatational damage solid is modeled. When « =1, the
behavior of the solid is similar to that of isotropic damage material. « -« resultsina
deviatoric damage material.

Cohesive zone model is implemented in the ssFEM computer program to account for
dewetting between the particles and matrix material. Only the local finite element model
contains the cohesive zone as the global model does not account for the details of the
structure such as the particles. The cohesive zone, when it separates, has a softening
behavior. The iterative equation solver (Conjugate Gradient Method) that is adopted in
the program can not handle the softening behavior. Thus, a direct solver (Skyline
method) was used to solve the problems. The direct solver requires much larger memory
space than the iterative one does. Therefore, it was difficult to place many particles. At
most, we could place four particles.

The results presented in this report revealed that the use of isotropic damage model is
not appropriate since the material damage may progress under a negative hydrostatic
stress. The use of the separate dilatational/deviatoric damage model is recommended
with the hydrostatic stress having the major contribution. The evolutions of progressive
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damage zones are presented. When the particles are aligned in the loading direction, the
damage zones connect the particles. Due to the strong constraint from the particle,
damage zones do not develop at the sides of the particle.

Dewetting between the particles and matrix material is seen to initiate at the top and the
bottom of the particles. Dewetting does not occure at the sides of the particles.
Depending on the strength of bond between the particles and matrix material, dominant
damage mechanism changes. When the bond is very strong, i.e., the value of constant
oM s large, only the matrix damage occurs. When the bond is very weak, i.e., oM
is small, dewetting is the dominant damage mechanism. When the strength of the bond
is comparable to the stress at the initiation of matrix damage, both the damage
mechanisms take place.

Although ssFEM computer code has been developed for the damage analyses, the
material constants that were adopted in the analyses are postul ated ones. However, some
characteristic behavior of particulate composite materials with progressive damage has
been revealed.

In summary, during present research, the followings have been accomplished.

1) The separate dilatational/deviatoric damage constitutive model was proposed along
with a method to extract its material parameters from one-dimensional stress-strain
curve. The damage model was implemented in the ssFEM computer program,

2) S-FEM formulation with the cohesive zone model has been proposed and has been
implemented in the s-FEM program.

3) SFEM analyses on particulate composite materials, with assuming the matrix
damage and dewetting between the particles and matrix material, has been carried
out. Some characteristic behavior of damages in the particulate composite materials
has been reveal ed.
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